SINGLE STEP SYNTHESIS OF SUBSTITUTED 4H-1,4-BENZOTHIAZINES

Naveen Gautam, D.C. Gautam and R.R. Gupta^{*} Department of Chemistry, Rajasthan University, Jaipur-302 004, India

Abstract: The present work deals with one pot synthesis of substituted 4H-1,4-benzothiazines by the condensation and oxidative cyclisation of 2-amino-5-bromo-3-methylbenzenethiol with β -diketones/ β -ketoesters in dimethyl sulfoxide. The structure of all the synthesized compounds have been characterized by elemental analyses and spectral studies.

Introduction

4H-1,4-Benzothiazines resemble structurally to phenothiazines (1,2) in having a fold along nitrogen-sulphur axis which is one of the structural specificity to impart biological activities (3-6) to phenothiazines. As such 4H-1,4-benzothiazines are anticipated to possess a wide spectrum of biological activities similar to that of phenothiazines.

Results and Discussion

Substituted 4H-1,4-benzothiazines have been synthesized by one pot reaction involving condensation and oxidative cyclisation of 2-amino-5-bromo-3-methylbenzenthiol <u>1</u> with β -diketones/ β -ketoesters <u>2</u> in dimethyl sulfoxide. The reaction is believed to proceed through the formation of an imtermediate enaminoketone <u>3</u> (7,8). Under the above experimental conditions 2-amino-5-bromo-3-methylbenzenethiol <u>1</u> is readily oxidized to bis-(2-aminophenyl) disulphide **1a** (9,10) which cyclizes to 4H-1,4-benzothiazines <u>4</u> by scission of sulphur-sulphur bond due to high reactivity of α -position of enaminoketone system <u>3</u> towards nucleophilic attack (Scheme-1).

The IR spetra of all the synthesized 4H-1,4-benzothiazines exhibit a single sharp peak in the region 3220-3380cm⁻¹ due to N-H stretching vibrations. The sharp band in the region 1650-1700cm⁻¹ is due to C=0 stretching vibrations. The compounds <u>4a-g</u> exhibit absorption bands 1330-1460cm⁻¹ due to C-H deformation vibration of CH₃ group. In compound <u>4e</u> – <u>f</u> bands appearing in the region 1220-1250 cm⁻¹ and 1030-1060cm⁻¹ are attributed to C-O-C asymmetric and symmetric vibrations respectively. Compound <u>4e</u> exhibits a single band in the region 780cm-1 due to C-CI stretching vibrations. Compounds <u>4a - g</u> exhibit a single peak in the region 500-600cm⁻¹ due to C-Br stretching Vibrations.

(Scheme-1)

$$R_{1}=CH_{3}$$

$$R_{2} = -OCH_{3} - OC_{2}H_{5} - C_{6}H_{4}CI(p), - C_{6}H_{4}Br(p), - C_{6}H_{4} CH_{3}(p), - C_{6}H_{4}OCH_{3}(m), - C_{6}H_{4}OCH_{3}(o),$$

The NMR spectra of the compounds $\underline{4a} - \underline{q}$ exhibit a single sharp peak in the region δ 7.79-8.30 due to NH proton. The multiplets observed in the region δ 6.49-7.76 are due to aromatic protons. In compound $\underline{4a}$ singlet at δ 3.39 arises due to OCH₃ protons at C₂. In compound $\underline{4g}$ a singlet is observed at δ 2.88 due to CH₃ protons at para position in benzoyl side chain at C₂. Compounds $\underline{4e}$ and $\underline{4f}$ exhibit a singlet at δ 2.85 and δ 2.47 due to OCH₃ protons at ortho and meta positions respectively in benzoyl side chain at C₂. The singlet observed in the region δ 2.06-2.69 in the compounds $\underline{4a} - \underline{q}$ is assigned to CH₃ protons at C₃. Compound $\underline{4b}$ exhibits quartets and triplets in the region δ 2.25-2.37 and δ 1.80-1.96 due to CH₂ and CH₃ protons of OC₂H₅ group at C₂. A singlet is observed in the region δ 1.16-2.12 due to CH₃ protons at C₅.

The mass spectra of all the synthesized 4H-1,4-benzothiazines showed molecular ion peaks corresponding to their molecular weight. In all cases side chain at C_2 appears as base peak.

Experimental

All the melting points are uncorrected. The purity of synthesized compounds has been checked by thin layer chromatography and the structures have been characterized by elemental analysis and spectral data. Infrared spectra of all the compounds have been scanned in KBr on a Nicolet Spectrophotometer model 544. The NMR spectra have been recorded at 90 MHz on a Jeol FX 90 Q FT NMR using TMS as an internal standared in DMSO-d₆. Mass spectra were recorded on Kratos MS-30,MS-50 at 70 eV.

Preparation of substituted 4H-1,4-benzothiazines

To the stirred suspension of β -diketones/ β -ketoesters ($\underline{2}$; 0.01M) in dimethylsulfoxide (5 ml) was added 2-amino-5-bromo-3-methylbenzenethiol ($\underline{1}$; 0.01M) and the resulting mixture was refluxed for 20-30 minutes. The reaction mixture was concentrated and cooled down to room teperature and filtered. The product obtained was washed with petroleum ether and crystallized from methanol. The physical and analylical data of 4H-1,4-benzathiazines are given in Table 1.

R	R ₂	M.P. (^o C)	Yield (%)	Molecular Formula	% Found/Calcd		
					С	H	N
a CH ₃	OCH3	160	48	C ₁₂ H ₁₂ BrNO ₂ S	45.55	3.81	4.44
					45.85	3.82	4.45
b CH ₃	OC_2H_5	145	42	C ₁₃ H ₁₄ BrNO₂S	47.87	4.27	4.25
					47.56	4.26	4.26
c CH ₃	C ₆ H₄-Cl(p)	180	58	C ₁₇ H ₁₃ BrCINOS	52.04	3.28	3.55
					51.71	3.29	3.54
d CH ₃	C ₆ H₄-Br(p)	178	55	C ₁₇ H ₁₃ Br ₂ NOS	46.58	2.97	3.17
-	• • •				46.46	2.96	3.18
e CH _a	C _c H ₄ -OCH ₃ (m)	155	48	C18H16BrNO2S	55.05	4.12	3.60
					55.38	4.10	3.58
f CH ₂	$C_{e}H_{a}$ -OCH ₂ (o)	135	45	C10H1cBrNO2S	55.10	4.11	3.61
- 3	-0.4 3				55.38	4.10	3.58
CH2	$C_{e}H_{a}$ - $CH_{a}(p)$	185	50	C ₁₀ H ₁₆ BrNOS	57.35	4.28	3.72
j	-0.43/P/			- 1010	57.75	4.27	3.74
	R ₁ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	R_1 R_2 CH_3 OCH_3 CH_3 OC_2H_5 CH_3 OC_2H_5 CH_3 C_6H_4 -Cl(p) CH_3 C_6H_4 -Br(p) CH_3 C_6H_4 -OCH_3(m) CH_3 C_6H_4 -OCH_3(o) CH_3 C_6H_4 -OCH_3(o) CH_3 C_6H_4 -CH_3(p)	R_1 R_2 M.P. (°C) CH_3 OCH_3 160 CH_3 OC_2H_5 145 CH_3 OC_2H_5 145 CH_3 C_6H_4 -Cl(p) 180 CH_3 C_6H_4 -Br(p) 178 CH_3 C_6H_4 -OCH_3(m) 155 CH_3 C_6H_4 -OCH_3(m) 135 CH_3 C_6H_4 -CH_3(p) 185	R_1 R_2 M.P. Yield $(^{\circ}C)$ $(^{\circ}C)$ $(^{\circ}C)$ $(^{\circ}C)$ CH_3 OCH_3 160 48 CH_3 OC_2H_5 145 42 CH_3 C_6H_4 -Cl(p) 180 58 CH_3 C_6H_4 -Br(p) 178 55 CH_3 C_6H_4 -OCH_3(m) 155 48 CH_3 C_6H_4 -OCH_3(o) 135 45 CH_3 C_6H_4 -CH_3(p) 185 50	R1 R2 M.P. Yield Molecular Formula (°C) (%) (%) (%) CH3 OCH3 160 48 C12H12BrNO2S CH3 OC2H5 145 42 C13H14BrNO2S CH3 OC2H5 145 42 C13H14BrNO2S CH3 C66H4-Cl(p) 180 58 C17H13BrCINOS CH3 C66H4-OCH3(m) 178 55 C17H13Br2NOS CH3 C66H4-OCH3(m) 155 48 C18H16BrNO2S CH3 C66H4-OCH3(m) 155 45 C18H16BrNO2S CH3 C66H4-OCH3(m) 135 45 C18H16BrNO2S CH3 C66H4-OCH3(m) 185 50 C18H16BrNO2S	R_1 R_2 M.P. Yield Molecular Formula % F $(^{\circ}C)$ $(\%)$ $(\%)$ C C C CH_3 OCH_3 160 48 $C_{12}H_{12}BrNO_2S$ 45.55 CH_3 OCC_2H_5 145 42 $C_{13}H_{14}BrNO_2S$ 47.87 CH_3 OC_2H_5 145 42 $C_{13}H_{14}BrNO_2S$ 47.87 CH_3 C_6H_4 -Cl(p) 180 58 $C_{17}H_{13}BrCINOS$ 52.04 CH_3 C_6H_4 -Br(p) 178 55 $C_{17}H_{13}Br_2NOS$ 46.58 CH_3 C_6H_4 -OCH_3(m) 155 48 $C_{18}H_{16}BrNO_2S$ 55.05 CH_3 C_6H_4 -OCH_3(m) 155 45 $C_{18}H_{16}BrNO_2S$ 55.10 CH_3 C_6H_4 -OCH_3(o) 135 45 $C_{18}H_{16}BrNO_2S$ 55.10 CH_3 C_6H_4 -CH_3(p) 185 50 $C_{18}H_{16}BrNO_2S$ 55.10 CH_3 C_6H_4 -CH_3(p) 185 50 $C_{18}H_{16}BrNO_2S$ 55.38	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Table 1: Physical and analytical data of 4H-1,4-benzothiazines 4a-g

Acknowledgement

CSIR, New Delhi is duly acknowledged for the award of JRF. Thanks are also due to the RSIC (CDRI), Lucknow for providing IR and mass spectra.

References

- (1) R.R. Gupta (Ed.), "Phenothiazines and 1,4-Benzothiazines-Chemical and Biomedical Aspects", Elsevier, Amsterdam, 1988
- (2) H. Keyzer, G.M. Eckert, I.S. Forrest, R.R. Gupta, F. Gutmann and J. Molnar (Eds.), "Thiazines and Structurally Related Compounds", (Proceeding of Sixth International Conference on Phenothiazines and Structurally Related Psychotropic Compounds, Pasadena, California, September 11-14, 1990), Kriger Publishing Company, Malabar, Florida, USA, 1992
- (3) S.K. Mukherji, M. Jain, A. Gupta, V. Saraswat and R.R. Gupta, Ind. J. Chem. <u>33B</u> 990
 (1994)
- (4) R.R. Gupta, M. Jain, R.S. Rathore and A. Gupta, J. Fluor. Chem. <u>62</u>, 191 (1993)
- (5) R.R. Gupta, R.S. Rathore, M. Jain and V. Saraswat, Pharmazie <u>47</u>, 229 (1992)
- (6) V. Gupta and R.R. Gupta, J. Prakt. Chem. <u>333</u>, 153 (1991)
- (7) D.D. Bhatnagar, K.K. Gupta, V. Gupta and R.R. Gupta, Curr. Sci. <u>58</u>, 1091 (1989)
- (8) R.R. Gupta, R.K. Rathore, V. Gupta and R.S. Rathore, Pharmazie <u>46</u>, 602 (1991)
- (9) R.R. Gupta and Rakesh Kumar, J. Fluor. Chem. <u>31(1)</u>, 19 (1986)
- (10) M. Marziano, G. Montavdo and R. Passerini, Ann. Chim <u>52</u>, 121 (1962)

Received June 28, 1997